Automatic Synthesis of Piecewise Linear Quadratic Invariants for Programs

نویسندگان

  • Assalé Adjé
  • Pierre-Loïc Garoche
چکیده

Among the various critical systems that worth to be formally analyzed, a wide set consists of controllers for dynamical systems. Those programs typically execute an infinite loop in which simple computations update internal states and produce commands to update the system state. Those systems are yet hardly analyzable by available static analysis method, since, even if performing mainly linear computations, the computation of a safe set of reachable states often requires quadratic invariants. In this paper we consider the general setting of a piecewise affine program; that is a program performing different affine updates on the system depending on some conditions. This typically encompasses linear controllers with saturations or controllers with different behaviors and performances activated on some safety conditions. Our analysis is inspired by works performed a decade ago by Johansson et al, and Morari et al, in the control community. We adapted their method focused on the analysis of stability in continuous-time or discretetime settings to fit the static analysis paradigm and the computation of invariants, that is over-approximation of reachable sets using piecewise quadratic Lyapunov functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic synthesis of k-inductive piecewise quadratic invariants for switched affine control programs

Among the various critical systems that are worth to be formally analyzed, a wide set consists of controllers for dynamical systems. Those programs typically execute an infinite loop in which simple computations update internal states and produce commands to update the system state. Those systems are yet hardly analyzable by available static analysis method, since, even if performing mainly lin...

متن کامل

Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program

  The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...

متن کامل

Piecewise Linear Solution Paths for Parametric Piecewise Quadratic Programs

Recently, pathfollowing algorithms for parametric optimization problems with piecewise linear solution paths have been developed within the field of regularized regression. This paper presents a generalization of these algorithms to a wider class of problems, namely a class of parametric piecewise quadratic programs and related problems. By using pathfollowing algorithms that exploit the piecew...

متن کامل

Convex parametric piecewise quadratic optimization: Theory, Algorithms and Control Applications

In this paper we study the problem of parametric minimization of convex piecewise quadratic functions. Our study provides a unifying framework for convex parametric quadratic and linear programs. Furthermore, it extends parametric programming algorithms to problems with piecewise quadratic cost functions, paving the way for new applications of parametric programming in dynamic programming and o...

متن کامل

An Implementation of an Algorithm for Nonlinear Programming Based on Piecewise Linear Models

This is a progress report on an implementation of the active-set method for nonlinear programming proposed in [6] that employs piecewise linear models in the active-set prediction phase. The motivation for this work is to develop an algorithm that is capable of solving large-scale problems, including those with a large reduced space. Unlike SQP methods, which solve a general quadratic program a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015